The weighted Hardy inequality and self-adjointness of symmetric diffusion operators

نویسندگان

چکیده

Let Ω be a domain in R d with boundary Γ, Γ the Euclidean distance to and H = − div ( C ∇ ) an elliptic operator c k l > 0 where are real, bounded, Lipschitz functions. We assume that ∼ δ I as → sense of asymptotic analysis is strictly positive, function ≥ . also there r b , such weighted Hardy inequality ∫ | ψ 2 valid for all ∈ ∞ { x : < } then prove condition / sufficient essential self-adjointness on supremum over possible inequality. This result extends known results domains smooth boundaries gives information large family rough, e.g. fractal, boundaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-adjointness of Dirac Operators via Hardy-dirac Inequalities

Distinguished selfadjoint extension of Dirac operators are constructed for a class of potentials including Coulombic ones up to the critical case, −|x|. The method uses Hardy-Dirac inequalities and quadratic form techniques.

متن کامل

Self-adjointness via Partial Hardy-like Inequalities

Distinguished selfadjoint extensions of operators which are not semibounded can be deduced from the positivity of the Schur Complement (as a quadratic form). In practical applications this amounts to proving a Hardy-like inequality. Particular cases are Dirac-Coulomb operators where distinguished selfadjoint extensions are obtained for the optimal range of coupling constants.

متن کامل

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

On the Essential Self-Adjointness of Anti-Commutative Operators

In this article, linear operators satisfying anti-commutation relations are considered. It is proven that an anti-commutative type of the Glimm-Jaffe-Nelson commutator theorem follows.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2021

ISSN: ['0022-1236', '1096-0783']

DOI: https://doi.org/10.1016/j.jfa.2021.109067